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Abstract
We consider a quantum system of two particles in dimension three interacting
via a smooth potential. We characterize the asymptotic dynamics in the limit
of small mass ratio for an initial state given in product form, with an explicit
control of the error. An application to the decoherence effect produced on the
heavy particle is also discussed.

PACS numbers: 02.30.Sa, 03.65.Nk, 03.65.Yz

1. Introduction and main result

The analysis of the asymptotic dynamics of a quantum system composed of heavy and light
particles for a small value of the mass ratio is of considerable relevance in many physical
applications.

In particular in molecular physics one is interested in the case in which the light particles,
at time zero, are in a bound state corresponding to some energy level En(R1, . . . , Rk) produced
by the interaction potential with the heavy ones considered in the fixed positions R1, . . . , Rk .
Exploiting the Born–Oppenheimer approximation, one can show that, for small values of
the mass ratio, the slow motion of the heavy particles is well described by a semiclassical
evolution, while the rapid motion of the light particles produces a persistent effect on the
motion of the heavy ones, described by the effective potential En(R1, . . . , Rk) (see, e.g.,
[H, HJ] and references therein).
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The situation is qualitatively different if there are no bound states of the light particles
and only scattering processes between light and heavy particles can take place.

The analysis of such a kind of problems is particularly relevant, for instance, in the study
of the mechanism of decoherence induced on one heavy particle by multiple scattering by
many light ones (see, e.g., [JZ, GF, HS, GJKKSZ, BGJKS] and references therein).

The starting point of the analysis is a two-body interaction between a heavy and a light
particle which, at least at a qualitative level, has been clearly described by Joos and Zeh [JZ].
The idea is that, for small mass ratio, there is a separation of two characteristic time scales, a
slow one for the dynamics of the heavy particle and a fast one for the light particle. Therefore,
for an initial state of the form ϕ(R)χ(r), where ϕ and χ are the initial wavefunctions of the
heavy and the light particles, respectively, the evolution of the system is described via the
instantaneous transition

ϕ(R)χ(r) → ϕ(R)(SRχ)(r) (1.1)

where SR is the scattering operator corresponding to the heavy particle fixed at the position R.
The transition (1.1) simply means that the final state is computed in a zeroth-order

adiabatic approximation, with the light particle instantaneously scattered far away by the
heavy one considered as a fixed scattering centre. Formula (1.1) gives a simple and clear
description of the process but it is based on a too crude approximation in the sense that time
zero for the heavy particle corresponds to infinite time for the light one and then the evolution
in time of the system is completely neglected.

In fact, after consideration of the effect of many scattering events, in [JZ] the formula is
further modified introducing, by hand, the internal dynamics of the heavy particle and then
restoring the complete time evolution of the system.

It should be remarked that, while for the standard Born–Oppenheimer approximation a
detailed mathematical treatment has been developed, in the case where the basic process is the
scattering event, as the one described by Joos and Zeh, a complete rigorous analysis seems to
be lacking. Our aim in this paper is to give such a rigorous analysis for a two-particle system
in R3, interacting via a generic potential V .

Starting from the Schrödinger equation of the system and an initial state given in product
form, we shall derive the asymptotic form of the wavefunction for small values of the mass
ratio and with an explicit control of the error. The result can be considered as a rigorous
derivation of the formula (1.1), modified taking into account the internal motion of the heavy
particle.

Furthermore, we shall exploit the asymptotic form of the wavefunction to briefly outline
how the decoherence effect produced on the heavy particle can be explicitly computed. We
will not address here any fundamental question such as the transition from quantum to
classical behaviour induced by environmental decoherence or its role in the measurement
process. We want only to point out that Joos and Zeh formula (1.1) describes a process of
dynamical entanglement between the coordinates of the two particles driven by the interaction.
For a continuous system it remains the only explicit example of a ‘von Neumann’s ideal
measurement’.

A more satisfactory derivation of the decoherence effect would require the consideration
of a large number of light particles, along the line of [JZ] and, more recently, of [HS]. In such
a case the mathematical treatment of the model is considerably more complicated and it will
be not considered here.

We note that the description of the two particles process is a crucial point for understanding
of recent experimental works (see, e.g., [HUBHAZ] and references therein), where the
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decoherence effect of a rarefied gas of light particles on the interference fringes in a two
slit experiment for macromolecules is measured.

The analysis presented here generalizes a previous result obtained in [DFT], where a
one-dimensional two-particle system was considered with an interaction given by a repulsive
δ-potential. The proof in [DFT] relies on the explicit knowledge of the time-dependent
propagator for the Hamiltonian of the system (see, e.g., [S]), and it cannot be extended to the
case of a generic interaction.

In the proof presented here the main technical ingredient is a standard dispersive estimate
for the solutions of the Schrödinger equation, in the form given by Yajima [Y].

In order to formulate our main result, summarized in theorem 1.1, we shall introduce
some notation and assumptions. The Hamiltonian of the two-particle system reads

Ĥ = − h̄2

2M
�R − h̄2

2m
�r + λ0V (r − R) (1.2)

where R, r ∈ R3 denote, respectively, the coordinates of the heavy and the light particles, m,M

are the corresponding masses, V is the interaction potential and λ0 > 0 is a dimensionless
coupling constant.

To simplify the notation we fix M = h̄ = 1 and denote ε ≡ m and λ = ελ0, so that the
Hamiltonian takes the form

Ĥ ε = −1

2
�R +

1

ε

(
−1

2
�r + λV (r − R)

)
. (1.3)

We are interested in the asymptotic behaviour for ε → 0 and λ fixed of the solution �ε(t) of
the Schrödinger equation

i
∂�ε(t)

∂t
= Ĥ ε�ε(t) (1.4)

�ε(0;R, r) ≡ �0(R, r) = ϕ(R)χ(r). (1.5)

Note that the choice of the initial state in the form of a product state means that no correlation
is assumed between the positions of the two particles at time zero.

Moreover, let us introduce the one-particle Hamiltonians in L2(R3)

H = − 1
2� + λV (1.6)

H(x) = − 1
2� + λV (· − x) x ∈ R3 (1.7)

H0 = − 1
2� (1.8)

and denote by S(R3) the Schwartz space, by L2(R3)ac the absolutely continuous subspace of
H and let 〈x〉 = (1 + |x|2)1/2.

We shall consider the following technical assumptions on the potential and the initial
states:

(A1) the potential V is Hölder-continuous and there exists a constant C > 0 such that
|V (x)| � C〈x〉−δ , δ > 5;

(A2) zero is neither an eigenvalue nor a resonance for H;
(A3) ϕ, χ ∈ S(R3), χ ∈ L2(R3)ac.

The assumptions on V guarantee that all the Hamiltonians defined above are self-adjoint
operators, bounded below, in the corresponding Hilbert spaces and that the following wave
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operators in L2(R3) parametrized by x ∈ R3:

	x
± = s − lim

τ→±∞ eiτH(x) e−iτH0 (1.9)

exist and are complete. In the following we shall simply write 	± instead of 	0
±.

In what follows we will denote by ‖·‖ the norm in L2(R6) and by ‖·‖p the norm in Lp(R3),
with p ∈ [1, +∞].

We can now state our main result

Theorem 1.1. Under the assumptions (A1), (A2), (A3) and for any fixed λ > 0 and t > 0, one
has

‖�ε(t) − �a(t)‖ � A√
t

√
ε + Bε (1.10)

where

�a(t) = e−itĤ ε
0�a

0 (1.11)

Ĥ ε
0 = −1

2
�R − 1

2ε
�r (1.12)

�a
0 (R, r) = ϕ(R)

[(
	R

+

)−1
χ

]
(r) (1.13)

and the two positive constants A and B depend only on the initial state and on the interaction
potential.

Note that the action of
(
	R

+

)−1
on a state of a particle localized in position very far away and

moving towards the scattering centre is close to the action of the scattering operator SR (see,
e.g., [T]). In this sense theorem 1.1 gives the Joos and Zeh formula modified for the presence
of the internal motion of the heavy particle.

As it was mentioned above, in the proof we exploit dispersive estimates for the solutions
of the Schrödinger equation. More precisely, using assumptions (A1), (A2) it is shown in
[Y] that the wave operators (1.9) are bounded operators in Lp and in Sobolev spaces. Then a
direct application of the intertwining property of the wave operators gives the estimates

‖e−itH ξ‖∞ � C

t3/2
‖ξ‖1 sup

t�0
‖e−itH ξ‖∞ � C‖(H + I)ξ‖2 (1.14)

which will be key ingredients of our proof (see lemma 2.2). In this way only smoothness
assumptions are needed on the initial state. On the other hand, we have to make restrictive
hypotheses on the potential, especially assumption (A2), and only a rate of convergence

√
ε

can be proved.
An alternative strategy would be to consider an initial state χ compactly supported away

from the origin in the spectral representation of H. Following the methods of time-dependent
scattering theory one could prove theorem 1.1 without assuming (A2) and with a rate of
convergence of order ε.

A final remark concerns the fact that our assumption (A1) excludes the physical interesting
case of the Coulomb potential. We argue that the result stated in theorem 1.1 should still hold
in such a case, with the wave operator replaced by the long-range modified wave operator.
However, we are convinced that the proof cannot be obtained via a direct extension of the
techniques used in this paper for the case of smooth potentials.
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2. Proof of theorem 1.1

The proof of theorem 1.1 will be obtained through the proof of the three lemmas below.
The first step consists in finding an approximation of order ε on the initial datum; due to

the unitarity of the time evolution such an approximation holds at any time.

Lemma 2.1. There exists a constant C1 > 0 such that, for any t ∈ R one has∥∥�ε(t) − �ε
1(t)

∥∥ � C1ε (2.1)

where we defined

�ε
1(t;R, r) ≡

∫
R6

dx ′ dy ′ exp

(
−i

t

1 + ε
H0

)(
R + εr

1 + ε
− x ′

)
ϕ(x ′)

× exp

(
−i

t (1 + ε)

ε
Hε

)
(r − R, y ′)χ(y ′ + x ′) (2.2)

with

Hε = −1

2
� +

λ

1 + ε
V . (2.3)

Proof. The proof follows the same line of lemma 1 in [DFT].
First, one considers the transformation T ε which gives a description of the system in

terms of the relative and the centre of mass coordinates. For a generic square integrable �

such a transformation reads

(T ε�)(x, y) ≡ �
(
x − ε

1 + ε
y; x +

y

1 + ε

)
(2.4)

where the coordinate x ≡ R+εr
1+ε

denotes the position of the centre of mass of the system, while
y ≡ r − R is the coordinate of the relative motion.

Exploiting the factorization of the dynamics in the coordinates (x, y), one can write the
time evolution of the initial datum �0 = ϕ ⊗ χ in the following way:

(T ε�ε)(t; x, y) ≡ (T ε�ε(t))(x, y)

=
∫

R6
dx ′ dy ′ exp

(
−i

t

1 + ε
H0

)
(x − x ′)

× exp

(
−i

1 + ε

ε
tHε

)
(y, y ′)[T ε(ϕ ⊗ χ)](x ′, y ′). (2.5)

Unitarity of T ε and of the time evolution implies∥∥�ε(t) − �ε
1(t)

∥∥2 = ∥∥T ε�ε(t) − T ε�ε
1(t)

∥∥2

= ‖T ε(ϕ ⊗ χ) − T 0(ϕ ⊗ χ)‖2

=
∫

R6
dx dy

∣∣∣ϕ (
x − εy

1 + ε

)
χ

(
x +

y

1 + ε

)
− ϕ(x)χ(x + y)

∣∣∣2

=
∫

R6
dx dy

∣∣∣F (
x − εy

1 + ε
, y

)
− F(x, y)

∣∣∣2
(2.6)

where we defined F(x, y) ≡ ϕ(x)χ(x + y). Denoting

F̃ (k, y) = 1

(2π)
3
2

∫
R3

dx e−ik·xF (x, y) (2.7)
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and using elementary properties of the Fourier transform, it is easily seen that

∥∥�ε(t) − �ε
1(t)

∥∥2 =
∫

R6
dk dy

∣∣∣F̃ (k, y)
(

exp
(
−i

ε

1 + ε
y · k

)
− 1

)∣∣∣2

�
( ε

1 + ε

)2
∫

R6
dx dy|y · kF (k, y)|2

� ε2
∫

R6
dx dy|y|2 |∇x(ϕ(x)χ(x + y))|2. (2.8)

Defining

C2
1 ≡

∫
R6

dx dy|y|2 |∇x(ϕ(x)χ(x + y))|2 (2.9)

the proof is complete. �

From formula (2.2) it is clear that for the light particle the limit ε → 0 is equivalent to a large
time asymptotics, i.e. to a scattering regime.

The only technical point is that the corresponding generator (2.3) also depends on ε and
then the standard scattering estimates cannot be directly used.

Lemma 2.2. There exist two constants C2, C3 > 0 such that for any t > 0, one has

∥∥�ε
2(t) − �ε

1(t)
∥∥

2 � C2ε + C3

√
ε

t
(2.10)

where

�ε
2(t;R, r) ≡

∫
R3

dx ′ exp

(
−i

t

1 + ε
H0

) (
R + εr

1 + ε
− x ′

)
ϕ(x ′)

×
∫

R3
dy ′ exp

(
−i

1 + ε

ε
tH0

)
(r − R − y ′)

[
	−1

+ χ(· + x ′)
]
(y ′). (2.11)

Proof. In the following we will denote χ(x + y) by χx(y).
Due to unitarity of the transformation T ε defined in (2.4), one has∥∥�ε

2(t) − �ε
1(t)

∥∥ = ∥∥T ε�ε
2(t) − T ε�ε

1(t)
∥∥ (2.12)

where from definitions (2.2) and (2.11), one yields

T ε�ε
1(t; x, y) =

∫
R3

dx ′ exp

(
−i

t

1 + ε
H0

)
(x − x ′)ϕ(x ′)

×
∫

R3
dy ′ exp

(
−i

1 + ε

ε
tHε

)
(y, y ′)χx ′(y ′) (2.13)

T ε�ε
2(t; x, y) =

∫
R3

dx ′ exp

(
−i

t

1 + ε
H0

)
(x − x ′)ϕ(x ′)

×
∫

R3
dy ′ exp

(
−i

1 + ε

ε
tH0

)
(y − y ′)

(
	−1

+ χx ′
)
(y ′). (2.14)
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Therefore, a straightforward computation gives

∥∥�ε
2(t) − �ε

1(t)
∥∥ =

[ ∫
R6

dx dy|ϕ(x)|2
∣∣∣∣
(

exp

(
−i

1 + ε

ε
tHε

)
χx

)
(y)

−
(

exp

(
−i

1 + ε

ε
tH0

)
	−1

+ χx

)
(y)

∣∣∣∣
2
] 1

2

� sup
x∈R3

∥∥∥∥exp

(
−i

1 + ε

ε
tHε

)
χx − exp

(
−i

1 + ε

ε
tH0

)
	−1

+ χx

∥∥∥∥
2

= sup
x∈R3

∥∥∥∥exp

(
i
1 + ε

ε
tH0

)
exp

(
−i

1 + ε

ε
tHε

)
χx − 	−1

+ χx

∥∥∥∥
2

. (2.15)

Let us denote τ ≡ 1+ε
ε

t . Then

eiτH0 e−iτHε

χx − 	−1
+ χx = (

eiτH0 e−iτHε

χx − eiτH0 e−iτH χx

)
+

(
eiτH0 e−iτH χx − 	−1

+ χx

)
.

≡ (I ) + (II ) (2.16)

First we estimate (I ). Note that

(I ) = eiτH0(e−iτHε

eiτH − I) e−iτH χx. (2.17)

By Duhamel’s formula, we have

e−iτHε

eiτH − I =
∫ τ

0
ds

d

ds
e−isHε

eisH = i
ε

1 + ε
λ

∫ τ

0
ds e−isHε

V eisH . (2.18)

Therefore

(I ) = i
ε

1 + ε
λ eiτH0

∫ τ

0
ds e−i(τ−s)Hε

V e−isH χx. (2.19)

Separating the small and the large time contributions in equation (2.19), we obtain

‖(I )‖2 � ε

1 + ε
|λ|

∫ τ

0
ds‖V e−isH χx‖2

� ε

1 + ε
|λ|‖V ‖2

[∫ 1

0
ds‖e−isH χx‖∞ +

∫ ∞

1
ds‖e−isH χx‖∞

]
. (2.20)

The first integral on the rhs of (2.20) is estimated using the second inequality in (1.14), the
intertwining properties of the wave operators and the Fourier transform

‖e−itH χx‖∞ = ∥∥	+ e−itH0	−1
+ χx

∥∥
∞ � C

∥∥e−itH0	−1
+ χx

∥∥
∞ � C

∥∥F(
	−1

+ χx

)∥∥
1

� C

(∫
R3

dk

(k2 + 1)2

) 1
2
(∫

R3
dk(k2 + 1)2

∣∣F (
	−1

+ χx

)
(k)

∣∣2
) 1

2

� C
∥∥	−1

+ (H + I)χx

∥∥
2 � C‖(H + I)χx‖2. (2.21)

For the second integral on the rhs of (2.20), one can use the first estimate in (1.14), namely

‖e−itH χx‖∞ � C

t3/2
‖χx‖1. (2.22)

From formulae (2.20), (2.21), (2.22), we finally obtain

‖(I )‖2 � C
ε

1 + ε
λ‖V ‖2 (‖(H + I)χx‖2 + ‖χ‖1)

� C
ε

1 + ε
λ‖V ‖2

(‖χ‖H 2(R3) + ‖V ‖∞‖χ‖2 + ‖χ‖1
)
. (2.23)
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In order to estimate the term (II ) in (2.16), we proceed analogously. Since

eiτH0 e−iτH χx − 	−1
+ χx = iλ

∫ ∞

τ

ds eisH0V e−isH χx (2.24)

we can exploit the second inequality in (1.14)

‖(II )‖2 � λ

∫ ∞

τ

ds‖V e−isH χx‖2 � λ‖V ‖2

∫ ∞

τ

ds‖e−isH χx‖∞ � Cλ‖V ‖2‖χ‖1

∫ ∞

τ

ds

s3/2

� Cλ‖V ‖2‖χ‖1

√
ε

t
. (2.25)

From equations (2.15), (2.16), (2.23) and (2.25), we have∥∥�ε
2(t) − �ε

1(t)
∥∥ � Cλ‖V ‖2

[
ε(‖χ‖H 2(R3) + ‖V ‖∞‖χ‖2) +

(
ε +

√
ε

t

)
‖χ‖1

]
(2.26)

so the proof is complete. �
Let us note that performing the change of variables

x ′ = εr ′ + R′

1 + ε
y ′ = r ′ − R′ (2.27)

in the integral in definition (2.11) and using the identity

exp

(
−i

t

1 + ε
H0

) (
ε(r − r ′) + (R − R′)

1 + ε

)
exp

(
−i

1 + ε

ε
tH0

)
(r − r ′ − (R − R′))

= e−itH0(R − R′) exp

(
−i

t

ε
H0

)
(r − r ′) (2.28)

we obtain

�ε
2(t; r, R) =

∫
R6

dr ′ dR′ e−itH0(R − R′) exp

(
−i

t

ε
H0

)
(r − r ′)f ε(r ′, R′) (2.29)

with

f ε(r, R) ≡ ϕ

(
εr + R

1 + ε

) [
	−1

+ χ

(
εr + R

1 + ε
+ ·

)]
(r − R), ε � 0. (2.30)

Moreover, definitions (1.11), (1.12) and (1.13) yield

�a(t; r, R) =
∫

dr ′ dR′ e−itH0(R − R′)ϕ(R′) exp

(
−i

t

ε
H0

)
(r − r ′)

[(
	R′

+

)−1
χ

]
(r ′).

(2.31)

From (2.29), (2.30) and (2.31), it is clear that the proof of theorem 1.1 is complete if we show
that f ε can be replaced by f 0 with an error of order ε.

Lemma 2.3. There exists a constant C3 > 0 such that for any t ∈ R one has∥∥�ε
2(t) − �a(t)

∥∥ � C4ε. (2.32)

Proof. Following the same line of lemma 1 and using regularity properties of wave operators
[Y], we have

‖f ε − f 0‖2 = ‖T εf ε − T εf 0‖2 =
∫

R6
dx dy

∣∣∣T εf ε(x, y) − T εf ε
(
x − ε

1 + ε
y, y

)∣∣∣2

� ε2
∫

R6
dx dy|y|2∣∣∇x

[
ϕ(x)	−1

+ χx(y)
]∣∣2

� 9ε2
3∑

j,k=1

∫
R6

dx dk
∣∣∂xi

∂kj
ϕ(x) ̂	−1

+ χx(k)
∣∣2

(2.33)

where ̂	−1
+ χx is the Fourier transform of 	−1

+ χx .
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Let us prove that the integral in (2.33) is finite. From stationary scattering theory (see,
e.g., [I, RSIII]) it is well known that

̂	−1
+ χx(k) = (2π)−

3
2

∫
R3

dz +(z, k)χx(z) (2.34)

where +(z, k) is a classical solution of the time-independent Schrödinger equation

−1

2
�z+(z, k) + V (z)+(z, k) = |k|2

2
+(z, k). (2.35)

Therefore, from (2.34) and (2.35)

̂	−1
+ χx(k) = 1

(2π)
3
2 (|k|2 + 1)

∫
R3

dz +(z, k)(2H + 1)χx(z) (2.36)

where the regularity of χ allowed us to transfer the action of H from + to χx . A straightforward
computation gives

∣∣∂kj

̂	−1
+ χx(k)

∣∣2 � π−3(|k|2 + 1)−2

[
ξ 2

0 ‖(2H + 1)χx‖2
1

+ ξ 2
1

(∫
R3

dz(1 + |z|)|(2H + 1)χx(z)|
)2

]
(2.37)

where we introduced

ξ0 ≡ sup
x,k∈R3

|+(x, k)| (2.38)

ξ1 ≡ sup
x∈R3,k∈R3\{0}

∣∣∣∣∂kj
+(x, k)

1 + |x|
∣∣∣∣ . (2.39)

In proposition 2.5 of [TDM-B], it is proved that ξ0 and ξ1 are finite.
In order to proceed with the estimate of the rhs of (2.37), we observe that

‖(2H + 1)χx‖1 � ‖�χ‖1 + 2‖V ‖2‖χ‖2 + ‖χ‖1 (2.40)

and moreover∫
R3

dz(1 + |z|)|(2H + 1)χx(z)|

�
∫

R3
dz′(1 + |z′| + |x|)|−�χ(z′) + 2V (z′ − x)χ(z′) + χ(z′)|

� |x|(‖�χ‖1 + 2‖V ‖2‖χ‖2 + ‖χ‖1)

+ ‖(1 + | · |)�χ‖1 + 2‖V ‖2‖(1 + | · |)χ‖2 + ‖(1 + | · |)χ‖1. (2.41)

From estimates (2.37), (2.40) and (2.41), we obtain∣∣∂kj

̂	−1
+ χx(k)

∣∣2 � π−3(|k|2 + 1)−2ξ 2[γ0(V , χ) + γ1(V , χ)|x|2] (2.42)

where ξ = max(ξ0, ξ1) and

γ0(V , χ) ≡ 9‖�χ‖2
1 + 36‖V ‖2

2‖χ‖2
2 + 9‖χ‖2

1
(2.43)

γ1(V , χ) ≡ 6‖(1 + | · |)�χ‖2
1 + 24‖V ‖2

2‖(1 + | · |)χ‖2
2 + 6‖(1 + | · |)χ‖2

1.

Similarly, noticing that

∂xi

̂	−1
+ χx(k) = ̂	−1

+

(
∂xi

χ
)
x
(k) (2.44)
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we have ∣∣∂xi
∂kj

̂	−1
+ χx(k)

∣∣2 � π−3(|k|2 + 1)−2ξ 2[β0(V , χ) + β1(V , χ)|x|2] (2.45)

where

β0(V , χ) ≡ 9‖�∇χ‖2
1 + 36‖V ‖2

2‖∇χ‖2
2 + 9‖∇χ‖2

1
(2.46)

β1(V , χ) ≡ 6‖(1 + | · |)�∇χ‖2
1 + 24‖V ‖2

2‖(1 + | · |)∇χ‖2
2 + 6‖(1 + | · |)∇χ‖2

1.

From (2.42) and (2.45), it is easily seen that∣∣∂xi
∂kj

ϕ(x) ̂	−1
+ χx(k)

∣∣2 � 2π−3(|k|2 + 1)−2ξ 2
{∣∣∂xi

ϕ(x)
∣∣2

[γ0(V , χ) + γ1(V , χ)|x|2]

+ |ϕ(x)|2[β0(V , χ) + β1(V , χ)|x|2]
}
. (2.47)

Since, by hypothesis, ϕ belongs to the Schwarz space, the last integral in (2.47) is bounded.
Finally, standard commutation rules between the Hamiltonian and the translation operator

provide the following identity:[
	−1

+ χ(R + ·)](r − R) = [(
	R

+

)−1
χ

]
(r). (2.48)

From equations (2.29), (2.33) and (2.48) the result is proved. �

Proof of theorem 1.1. Lemmas 2.1, 2.2 and 2.3 give the result with A = C3 and
B = C1 + C2 + C4.

3. Application to decoherence

It is well known that interference effects observed in the quantum system prepared in a
superposition state are extremely sensitive to the interaction with the environment. Stressing
this aspect one can define decoherence as a mechanism of irreversible diffusion in the
environment of the spatial correlations present in a micro sub-system initially in a superposition
state.

Here we consider the simplest situation where the system and the environment consist
of a heavy and a light particles, respectively. In this case the mechanism of decoherence is
originated by the scattering of the light particle from the heavy one, and it is described in [JZ]
starting from formula (1.1).

In fact, if the initial state of the heavy particle is a coherent superposition of two well-
separated wave packets, exploiting the linearity of the evolution in (1.1), one sees that the two
wave packets act as independent scatterers producing two different scattered waves for the
light particle. The scalar product of these two scattered waves is strictly less than one, and this
is the origin of the decoherence effect on the heavy particle. We shall describe this mechanism
exploiting the result of theorem 1.1 and then imposing suitable assumptions on the initial state
and the strength of the interaction.

In particular, in order to describe the dynamics of the heavy particle in the presence of the
light one, we introduce the reduced density matrix, defined as the positive, trace class operator
ρε(t) in L2(R3) with Trρε(t) = 1 and integral kernel given by

ρε(t;R,R′) =
∫

R3
dr�ε(t;R, r)�ε(t;R′, r). (3.1)

As a consequence of theorem 1.1 one easily obtains the asymptotic dynamics of the heavy
particle in the small mass ratio limit.
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Corollary 3.1. Under the same assumptions of theorem 1.1, one has

lim
ε→0

Tr|ρε(t) − ρa(t)| = 0 (3.2)

where

ρa(t) = e−itH0ρa
0 eitH0 (3.3)

and ρa
0 is a density matrix whose integral kernel is

ρa
0 (R,R′) = ϕ(R)ϕ(R′)I(R,R′) (3.4)

I(R,R′) = ((
	R

+

)−1
χ,

(
	R′

+

)−1
χ

)
. (3.5)

It should be stressed that the asymptotic dynamics of the heavy particle described by ρa(t) is
a free evolution and the only effect of the interaction is to induce a sudden change of the initial
state from ϕ(R)ϕ(R′) to ϕ(R)ϕ(R′)I(R,R′).

Note that I(R,R′) = I(R′, R) and |I(R,R′)| � 1.
It is easily seen that limR′→∞

∥∥(
	R′

+

)−1
χ − χ

∥∥ = 0 and
∣∣((	R

+

)−1
χ, χ

)∣∣ < 1 for

any fixed R ∈ R3 and any χ such that χ �= (
	R

+

)−1
χ . Then there exist K,K ′ > 0

such that |I(R,R′)| < 1 for |R| < K and |R′| > K ′ and this in particular implies that
Tr(ρa(t))2 = Tr

(
ρa

0

)2
< 1, i.e. the asymptotic dynamics of the heavy particle is described by

a mixed state.
We can also describe the behaviour of I(R,R′) for small values of |R − R′|. In fact

I(R,R′) = 1+
((

	R
+

)−1
χ,

((
	R′

+

)−1−(
	R

+

)−1)
χ

)
, and the last scalar product can be estimated

as follows:

Proposition 3.2. If V ∈ H 1(R3) then for any R,R′ ∈ R3 one has∥∥(
	R

+

)−1
χ − (

	R′
+

)−1
χ

∥∥
2 � C5λ‖∇V ‖2|R − R′| (3.6)

where C5 does not depend on R,R′.

Proof. We follow the line of the proof of lemma 2.2, formulae (2.16)–(2.26), to obtain[(
	R

+

)−1 − (
	R′

+

)−1]
χ = lim

t→∞ eitH0 [e−itH(R) eitH(R′) − I] e−itH(R′)χ

= lim
t→∞ eitH0

∫ t

0
ds

d

ds
(e−isH(R) eisH(R′)) e−itH(R′)χ

= iλ lim
t→∞ eitH0 eitH(R)

∫ t

0
dσe−iσH(R)(V R′ − V R) eiσH(R′)χ (3.7)

where V x acts as a multiplication by the function V (· − x) and we performed the change of
variable σ = t − s. Thus one has∥∥[(

	R
+

)−1 − (
	R′

+

)−1]
χ

∥∥
2 � λ‖V R − V R′ ‖2

∫ ∞

0
dσ‖eiσHR′

χ‖∞. (3.8)

Still following the proof of lemma 2.2, we use the dispersive estimates (1.14) to obtain∥∥[(
	R

+

)−1 − (
	R′

+

)−1]
χ

∥∥
2 � Cλ(‖χ‖H 2(R3) + ‖V ‖∞‖χ‖2 + ‖χ‖1)‖V R − V R′ ‖2. (3.9)

Since V is an element of H 1(R3), the following estimate holds

‖V R − V R′ ‖2
2 �

∫
R3

dk |eik(R−R′) − 1|2|V̂ (k)|2

� |R − R′|2‖∇V ‖2
2. (3.10)

Inserting the estimate (3.10) in inequality (3.9) the proposition is proved. �
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For a concrete analysis of the decoherence effect, we fix the initial state of the heavy particle
in the form of a superposition of two wave packets

ϕ(R) = b−1
(
f 1

σ (R) + f 2
σ (R)

)
b ≡ ∥∥f 1

σ + f 2
σ

∥∥
2 (3.11)

f j
σ (R) = 1

σ 3/2
f

(
R − Rj

σ

)
eiPj ·R Rj , Pj ∈ R3 j = 1, 2 (3.12)

where f ∈ S(R3) is a real-valued function with ‖f ‖2 = 1.
Furthermore we assume that the potential V is slowly varying on a length scale of the order

of the spatial localization of each wave packet, more precisely, we assume C5λ‖∇V ‖2σ  1.
Using such an assumption and choosing the initial state (3.11), we can see that the state

of the entire system at any t > 0 can be written in a typical form of a cat-like entangled state.

Corollary 3.3. If the initial state for the heavy particle is given by (3.11), (3.12) and
V ∈ H 1(R3) satisfies the hypotheses (A1), (A2) and (A3) then there exists a constant C > 0
such that for any t > 0, one has

‖�a(t) − �e(t)‖ � C
λ

b
‖∇V ‖2σ (3.13)

where

�e(t) ≡ e−itĤ ε
0�e

0 (3.14)

and

�e
0(R, r) ≡ 1

b
f 1

σ (R)
[(

	R1
+

)−1
χ

]
(r) +

1

b
f 2

σ (R)
[(

	R2
+

)−1
χ

]
(r). (3.15)

Proof. Exploiting proposition (3.2), we have

‖�a(t) − �e(t)‖ = ∥∥�a
0 − �e

0(t)
∥∥

� 1

b

2∑
j=1

{∫
dR dr

∣∣f j
σ (R)

∣∣2∣∣[(	R
+

)−1
χ

]
(r) − [(

	
Rj

+

)−1
χ

]
(r)

∣∣2
} 1

2

� C5
λ

b
‖∇V ‖2

2∑
j=1

{∫
dR

∣∣f j
σ (R)

∣∣2|R − Rj |2
} 1

2

. (3.16)

Performing the change of variable R−Rj

σ
= z, we conclude the proof. �

From corollary 3.3, we have that the reduced density matrix for the heavy particle ρa(t) can
be further approximated by

ρe(t) = e−itH0ρe
0 eitH0 (3.17)

where ρe
0 has integral kernel

ρe
0(R,R′) = 1

b2

∣∣f 1
σ (R)

∣∣2
+

1

b2

∣∣f 2
σ (R)

∣∣2
+

�

b2
f 1

σ (R)f
2
σ (R′) +

�

b2
f 2

σ (R)f
1
σ (R′) (3.18)

� ≡
∫

R3
dr

[(
	

R2
+

)−1
χ

]
(r)

[(
	R1

+

)−1
χ

]
(r). (3.19)

It is clear from (3.19) that, if the interaction is absent, then � = 1, and (3.18) describes the
pure state corresponding to the coherent superposition of f 1

σ and f 2
σ evolving according to the

free Hamiltonian.
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Suppose in particular that the free time evolution of f 1
σ and f 2

σ show a significant
overlapping. In this case the time evolution of the last two terms in (3.18) gives contributions
on the diagonal R = R′ which are comparable with the time evolution of the first two terms,
making possible the typical interference effects.

If the interaction with the light particle is present, one sees that its only effect on the heavy
particle is to reduce the non-diagonal terms in (3.18) by the factor �, with |�| � 1, and this
means that the interference effects for the heavy particle are correspondingly reduced. In this
sense, we can say that a (partial) decoherence effect on the heavy particle has been induced
and, moreover, the effect is completely characterized by the parameter �.

It is worth observing that for a comparison of the theoretical prediction with the now
available experimental data (see, e.g., [HUBHAZ]), a careful evaluation of the parameter � is
required, which takes into account the specific initial state χ chosen for the light particle. Such
an evaluation has been approached in [JZ] and [GF]. A more careful analysis can be found in
[HS], where normalized states instead of unphysical ‘plane waves’ are used and, besides, at
each step, the approximations made are clearly justified on a physical ground. In particular, it
is correctly argued that a replacement of 	−1

+ with the S matrix requires specific assumptions
on the initial state χ .

It would be of interest to give a rigorous derivation of the formulae derived in [HS], with
an explicit control of the error made at each step of the approximation. Moreover, using
Joos–Zeh formula, it would be worth to give a rigorous approach to the focusing effect around
classical trajectories induced by the interaction with the environment. In early days of quantum
mechanics, this effect was analysed by Mott [M] in an attempt to give an explanation, in terms
of quantum dynamics, of the particle trajectories observed in a cloud chamber. At the best of
our knowledge no new results along this line were obtained since then. We plan to analyse
these problems in further work.
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